The generator matrix

 1  0  0  0  1  1  1  1  1  X  1  1  1  1  1  1  1 aX aX  1  X  1  1  1  1  1  1  1  1  1  1 (a+1)X  1  1  0  1 (a+1)X  1  1
 0  1  0  0  0  X  X (a+1)X+1 aX+1  1 aX+a a+1 X+a (a+1)X+a+1  1  X  0  1 (a+1)X  1  1 a+1 a+1 X+a+1 aX+1 (a+1)X aX+1 aX+1 aX+a  0 (a+1)X+a  1 X+a (a+1)X+a  1 X+a  1 (a+1)X+a+1  0
 0  0  1  0  1 (a+1)X+a (a+1)X+a+1  X aX+a aX+a aX  0 aX+a+1 aX+1 a+1 X+a  0 X+a  1 X+a+1 X+1 (a+1)X (a+1)X+a aX+a (a+1)X+a  a  1 aX a+1 X+a+1 (a+1)X+a a+1 aX+1 X+1 a+1 aX+a (a+1)X+a+1 X+a  1
 0  0  0  1 a+1  a  1 (a+1)X+a aX (a+1)X+a (a+1)X+1 X+a+1  a aX+a  0 aX a+1 (a+1)X X+a X+a X+1 aX aX+a aX+a+1 aX+a+1 X+1  0 (a+1)X+a+1 (a+1)X+1 (a+1)X+a X+1 aX+a (a+1)X+a+1 aX+a aX aX+a+1 (a+1)X+a (a+1)X+1  1
 0  0  0  0  X  0 aX  0  0  0 aX  X aX  X aX  X aX aX aX  X (a+1)X  0 (a+1)X  0  X aX (a+1)X (a+1)X  0  X (a+1)X  0 aX  0  X (a+1)X (a+1)X  0  X

generates a code of length 39 over F4[X,sigma]/(X^2) who�s minimum homogenous weight is 100.

Homogenous weight enumerator: w(x)=1x^0+189x^100+456x^101+372x^102+1452x^103+2019x^104+2736x^105+2832x^106+4380x^107+5073x^108+6732x^109+5616x^110+10308x^111+10896x^112+14220x^113+10428x^114+18180x^115+17172x^116+21312x^117+14820x^118+21876x^119+18309x^120+19656x^121+11160x^122+14244x^123+9894x^124+7788x^125+3576x^126+3228x^127+1857x^128+828x^129+348x^130+60x^131+66x^132+42x^136+3x^140+12x^144+3x^148

The gray image is a linear code over GF(4) with n=156, k=9 and d=100.
This code was found by Heurico 1.16 in 129 seconds.